
A unified view of the orthogonalization methods

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 6219

(http://iopscience.iop.org/0305-4470/33/35/310)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 6219–6222. Printed in the UK PII: S0305-4470(00)12958-0

A unified view of the orthogonalization methods

Vipin Srivastava
School of Physics, University of Hyderabad, Hyderabad 500 046, India

E-mail: vpssp@uohyd.ernet.in

Received 29 March 2000

Abstract. A geometrical view of all known orthogonalization procedures is taken in order
to understand their distinctive features and the inter-connections between them. Useful new
information is gained. Its possible application to certain cognitive phenomena is also indicated.

1. Introduction

The problem of conversion of a given set of linearly independent vectors into a set of
mutually orthogonal vectors has been studied for a long time. It finds wide applications
in mathematics, physics and chemistry. The methods involve a straightforward and simple
mathematics and differ in the special conditions they satisfy. We present a simple analysis of the
orthogonalization methods in terms of the projections of the given vectors on the orthogonalized
bases vectors and find that the methods possess some powerful properties hitherto unknown.
The discovered properties are not only curious but also have algorithmic value in that they
enable geometrical constructions of the orthogonal basis sets and the eigenvalues of the metric
matrix of the given vector set. These properties also underline the scenarios where the different
methods should be applicable. We expect that the present insight should also provide clues to
understand certain aspects of cognitive memory, e.g. along the lines of [1].

2. Orthogonalization methods—sequential and non-sequential

The Gram–Schmidt orthogonalization procedure, the oldest and most commonly used in
mathematics (also applied recently to spin-glass like neural networks [1]), gives an orthonormal
set depending on the sequence in which the given vectors are chosen. The work on sequence-
independent orthogonalization, in a particular context of physical problems, was initiated
by Landshoff [2] and Wannier [3], and later developed comprehensively by Löwdin [4]. Two
notable methods of this class are Löwdin’s symmetric [5] and canonical [6] orthogonalizations.
The symmetric orthogonalization contains the results of Landshoff and Wannier [4]. The
canonical orthogonalization is generally known in the physics literature (see [7] for references)
as Schweinler–Wigner [8] (hereafter referred to as SW). Schweinler and Wigner in fact
introduced a versatile parameter ‘m’ that highlighted an extremal property of Löwdin’s
canonical orthogonalization. Earlier Löwdin [9] had talked about an optimum principle
obeyed by the canonical orthogonalization which we find in a sense resembles the SW extremal
property. Recently Chaturvedi et al [7] have given a new orthonormal basis that has another
extremal property in terms of the SW parameter m.
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2.1. General framework

Let V represent a set of linearly independent vectors, �v1, �v2, �v3, . . . , �vN , in a N -dimensional
space which can in general be a complex vector space. We can define a general non-singular
linear transformation A for the basis V to go to a new basis Z:

Z = V A. (1)

The set Z(≡{�zκ}) will be orthonormal if

〈Z|Z〉 = 〈V A|V A〉 = A†〈V |V 〉A = A†MA = I (2)

where M is a Hermitian metric matrix of the given basis V . The substitution

A = M−1/2B (3)

where B is an arbitrary unitary matrix, leads to the general solution of the orthogonalization
problem. The specific choice B = I gives the symmetric orthogonalization, Z ≡ Φ =
V M−1/2, while B = U , where U diagonalizes M ,

U †MU = d (4)

gives the canonical orthogonalization, Z ≡ Λ = V Ud−1/2. The orthonormal basis due to
Chaturvedi et al [7], denoted here by Γ, is related to Λ, and coincides with Φ in a particular
circumstance indicated below.

2.2. Projections of V on Z

Taking our cue from Schweinler and Wigner [8] we consider the matrix



|(�v1, �z1)|2 |(�v1, �z2)|2 . . . |(�v1, �zN)|2
|(�v2, �z1)|2 |(�v2, �z2)|2 . . . |(�v2, �zN)|2

...
...

...

|(�vN, �z1)|2 |(�vN, �z2)|2 . . . |(�vN, �zN)|2




of projection squares of the given vectors {�vk} on a basis set {�zκ}. The elements in a row
corresponding to a particular �vk add up to |�vk|2:∑

κ

|(�vk, �zκ)|2 = |�vk|2 k = 1, . . . , N (5)

and the elements in a column for a particular �zκ add up to a real positive number cκ :∑
k

|(�vk, �zκ)|2 = (AMMA†)κκ = (BMB†)κκ = cκ κ = 1, . . . , N. (6)

Note that we have the identity
N∑

κ=1

cκ =
N∑

k=1

|�vk|2 a constant for a given set V . (7a)

Further, we have∑
κ

c2
κ = m the SW parameter. (7b)

A basis set Z will satisfy the set of simultaneous equations (6) with the positive real
numbers cκ obeying the identity (7a)†. Specific bases will satisfy additional conditions
on the values of cκ either through (7b) or otherwise. For instance, if cκ = |�vk|2 with

† The set of equations (6) will have many more solutions than those that form orthonormal bases. Many of these may
not even be bases. A N -dimensional orthonormal basis set will require N(N − 1)/2 conditions to be fulfilled.
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κ = k (i.e. B = I in (6)), we will get the symmetric basis Z = Φ; m = mmax, which
will arise for the maximally lop-sided distribution of the cκ (satisfying (7a)), will give the
canonical basis Z = Λ; and m = mmin, which will correspond to an average distribution,
c1 = c2 = · · · = cN = (c1 + c2 + · · · + cN)/N , will give the basis Z = Γ of Chaturvedi
et al [7]. For normalized �vk the basis Γ and the symmetric basis Φ become the same.

2.3. New information

The following useful information is embedded in the above identification. In the symmetric
case, where Z = Φ, since the sum of squared projections of all the �vk on a �φκ , say �φl , is equal
to the sum of squared projections of all the �φκ on the �vk with k = l, the symmetry properties
of V , if any, are preserved in Φ. This feature also ensures that Φ resembles the original set
V in that Löwdin’s resemblance measure [4], 〈Z − V |Z − V 〉, has its smallest value when
B = I or Z = Φ. If viewed slightly differently, the above symmetry interestingly implies
that the squared projections of all the �vk on a �φl add up to the squared length of �vl , the feature
that can be used to geometrically generate the symmetric basis set.

The last property above turns into a stricter condition in the case of m = mmin, where
Z = Γ: the basis vectors �γκ are arranged such that the sum of squared projections of all the �vk

on each �γκ is the same—equal to the average of |�vk|2—irrespective of how the �vk are arranged.
In effect, the set Γ is arranged so as to cancel the effects of inhomogeneity in the distribution
of �vk .

On the other hand, in the m = mmax case, with Z = Λ, the basis vectors �λκ must be
oriented such that they sample those directions in which bunches of �vk tend to be oriented. In
order to attain m = mmax the canonical basis set is arranged in such an optimal fashion that the
sum of squared projections of all the �vk on one of the �λκ , say �λ1 (i.e. c1) is the largest. After the
�λ1 is fixed, the rest of the set, orthogonal to �λ1, is oriented such that another �λκ , say �λ2, is able
to maximize the total squared projection of all the �vk on it. This will be c2 and will be smaller
than c1. All the �λκ are arranged according to this optimum-principle that ensures for the given
set {�vk} the most lop-sided distribution of cκ with c1 > c2 > · · · > cN . This particular set
of cκ in fact comprises the eigenvalues of M in the basis Λ (take B = U in equation (6))
which are generically non-degenerate. The arrangement of �λκ that yields the SW condition
of m = mmax manifests Löwdin’s optimal property [4, 9] of the canonical orthogonalization.
Note that just as the cκ gains its largest values (d)κκ for B = U , the quantity

∑
α

|Aακ |2 = (A†A)κκ = (B†M−1B)κκ (8)

has its smallest values for B = U , in which case it is (d−1)κκ . If d−1
1 is the smallest value and

the associated basis vector is �λ1, Löwdin [9] showed that for all vectors orthogonal to �λ1 the
sum

∑
α |Aακ |2 has the smallest value d−1

2 (>d−1
1 ) associated with �λ2, and that one can go on

in this manner to find the smallest d−1
κ associated with the respective �λκ .

It should be noted that the value of mmax depends on the distribution of orientations of
�vk relative to each other, whereas the value of mmin is independent of this. There can be any
number of V satisfying a particular identity (7a) but differing in distributions of orientations of
the vectors �vk . Each of these will have a different mmax but the same mmin. The inhomogeneity
in the distribution of directions of a given set of vectors will decide the value of mmax—the
larger the inhomogeneity, the larger will be the value of mmax.

Now we will examine the Gram–Schmidt orthogonalization (represented by Z = Ω) in
the framework of equation (6). The bases Ω (={�ωκ}), where for a predetermined sequence
of �vk a sequence of �ωκ is generated such that a �vk has non-zero projections only on those �ωκ
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for which κ � k, satisfy the modified set of equation (6) with |(�vk, �zκ)|2 = 0 for all κ > k

together with the identity (7a). It is clear at the outset that none of the Ω (N ! in number) can
coincide with the symmetric basis Φ, since for any Ω at least c1 is necessarily greater than
|�v1|2. But, an Ω corresponding to a certain sequence of �vk can accidently coincide with the
bases Γ or Λ. The possibility of the coincidence with Λ will however be precluded if the �vk

are normalized since then Λ coincides with Φ as seen above.

3. Conclusion

In summary, we find that it is easy to visualize all the orthogonalization methods in terms
of the projections of the given vectors on the orthogonal bases. This exercise elucidates
interesting geometrical features of the orthogonalized bases hidden in their optimal, extremal
and symmetry properties and also shows how these basis sets as well as the eigenvalues of the
metric matrix of the given V can be constructed purely from geometrical considerations.

Finally we may point out that the recent proposal [1] that Schmidt’s orthogonalization is
a plausible cognitive function the brain might be employing to discriminate an object from
another, is constrained by the orthogonalization procedure’s ‘sequence-dependence’ which
makes it applicable to phenomena like our thought process and use of language etc, that are
sequential in time. However, there are a host of cognitive phenomena that are not sequential
in time. For instance, detection of changes in a visual array, categorization according to
numerosities, etc [10]. It is expected that the understanding developed here of the sequence-
independent orthogonalizations will prove valuable in exploring such phenomena.
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